REPORTIDOCUMENTATION PAGE OO i O

andnnlmaﬂngme:muneeded lndconvhﬁmmd(emwingmeoolecﬁondkm\uﬁon s«dmmmswmm«wmwdw:mdmw
Including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Sulte 1204, Arlington VA 22202-4302. Respondents shouid be aware that notwithstanding any other provision of law, no person shail be subject ta any penaity for failing to
comply with a coltection of information if it does not display a currently valid OMB controt number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE - 3. DATES COVERED (From - To)
07-2003 Technical
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
OPERATING ON FUNCTIONS WITH VARIABLE DOMAINS 5b. GRANT NUMBER
5¢c. PROGRAM ELEMENT NUMBER
0601152N
FG- AUTHORS 5d. PROJECT NUMBER
P. G. Calabrese 5e¢. TASK NUMBER
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
SSC San Diego
San Diego, CA 92152-5001
FQ. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
Office of Naval Research P ——————

800 North Quincy Street
Arlington, VA 22217-5000

o 2090803038

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

This is a work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated
without restriction. Many SSC San Diego public release documents are available in electronic format at
http.//www.spawar.navy.mil/sti/publications/pubs/index.html

14. ABSTRACT

The sum, difference, product and quotient of two functions with different domains are usually defined only on their common domain. This paper extends these
definitions so that the sum and other operations are essentially defined anywhere that at least one of the components is defined. This idea is applied to propositions
and events, expressed as indicator functions, to define conditional propositions and conditional events as three-valued indicator functions that are undefined when
their condition is false. Extended operations of “and”, “or”, “not™ and “conditioning” are then defined on these conditional events with vanable conditions. The
probabilities of the disjunction (or) and of the conjunction (and) of two conditionals are expressed in terms of the conditional probabilities of the component
conditionals. Theorem | generalizes the standard result that the conditional expectation of the sum of two conditional random variables with disjoint and exhaustive
conditions is a weighted sum of the conditional expectations of the component conditional random variables. Because of the extended operations, the theorem is true
for arbitrary conditions. Theorem 2 gives a formula for the expectation of the product of two conditional random variables. After the definition of independence of

two random variablcs is extended to accommodate the extended operations, it is applied to the formula of Theorem 2 to simplify the expectation of a product of
conditional random variables.

Published tn Journal of Philosophical Logic, vol. 32, no. 1, February 2003, 1-18.

15. SUBJECT TERMS
Mission Area: Information Science

functions conditional expectation three-valued conditional
random variable  operations domain
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT| c. THIS PAGE | ABSTRACT OF P. G. Calarese
PAGES
19B. TELEPHONE NUMBER (Include area code)
U U U Uu 18 (619) 553-3680

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18




PHILIP G. CALABRIESE

OPERATING ON FUNCTIONS WITH VARIABLIEE DOMAINS *

Received 15 February 2002: received in revised Torm 10 July 2002

ABSTRACT. The sum, dillerence, product and quotient ol two Tunctions with dillerent
domaing arc usually delined only on their common domain. This paper extends these
definitions so that the sum and other operations are cssentially delined anywhere that at
least one ol the components is delined. This idea is applied to propositions and events. ex-
pressed as indicator functions, to deline conditional propositions and conditional events as
three-valued indicator Tunctions that are undefined when their condition is Talse. Extended
aperations of are then defined on these conditional
events with variable conditions. The probabilitics ol the disjunction (or) and ol the con-

v

and”, “or”, “not” and “conditioning’

junction (and) ol two conditionals are expressed in terms ol the conditional probabilities ol

the component conditionals. In a special case, these are shown 1o be weighted averages ol
the component conditional probabilitics where the weights are the relative probabilities of
the various conditions, Next, conditional random variables are delined to be random vari-
ables X whose domain has been restricted by a condition on a second random variable Y.
The extended sum, dillerence, product and conditioning operations on Tunctions are then
applied to these conditional random variables. The expectation ol a random variable and
the conditional expectation ol a conditional random variable are recounted. Theorem |
generalizes the standard vesult that the conditional expectation of the sim of two con-
ditional random variables with disjoint and exhaustive conditions is a weighted sum ol
the conditional expectations ol the component conditional random variables. Because of
the extended operations, the theorem is true Tor arbitravy conditions. Theorem 2 gives
a Tormula Tor the expectation ol the product ol two conditional random variables. Alter
the definition ol independence of two random variables is extended to accommodate the
extended operations. it is applied to the Formula ol Theorem 2 to simplity the expectation of
a product ol conditional random variables. ‘Two examples end the paper. The hrst concerns
a work force of n workers of different output levels and work shifts. The second example
involves two radars with overlapping surveillance vegions and dilferent detection error
rates. One radar’s error rate is assumed to be sensitive to Tog and the other radar’s error rate
is assumed Lo be sensitive 1o air traflic density. The combined error rate over the combined
surveillance region given hicavy Tog and moderate air traffic is computed.

KEY WORDS: conditional, conditional expectation, domain, [unctions, operations, ri-
dom variable. three-valued
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I. INTRODUCTION

From elemenrary mathematics, we are all familiar with the definitions
of the operations ol addition, subtraction, multiplication, and division for
real-valued functions defined on a common domain D. For each domain
element x, the sum Tunction, (f + g), is simply assigned the value (f +
2)(x) = f(x) + g(x), the sum ol the values of f and g at x, and similarly
for the other operations. However, function division, (f/g), requires an
extra condition, namely that g(x) not be zero, so that the division can be
performed. So (f/g) is said to be “undelined” for any domain values x
for which g(x) = 0. Thus already the division operation on functions
generates new lunctions that have restricted domains, and in general such
divisions will generate Tunctions having different domains of dcfinition.
This lcads to the standard definition ol operations on funetions whose
domains are different: 1I' f and g are defined on D and E respectively,
then the sum Tunction ( / -+ ¢) is defined on the intersection of D and I as
follows:

Wy (Fra))=] L0 Ten) HxE DAL
Undefined ifx¢g DNE.
The difference, product and division Tunctions f — g, f * g, and f/g are
similarly defined when D and 2 are the domains of f and g respectively,
but again the quotient ( f/¢) is also undefined on any zeros of g. Since
a summing of f and g cannot be performed for a given domain value x
unless both f and g are defined at x, this has seemed to be a reasonable
definition, and there has been no reason offercd to do it in any other way.

2. EXTENDED OPERATIONS OF SUM, DIFFERENCE AND PRODUCT
ON REAL-VALUED FUNCTIONS

However, recent developments i conditional event algebra |2, 5] suggest
that there is good reason for expanding the domain of the sum function to
include all values ol x that are in at least onc of the two domains, Using
the set theory notation D’ to denote the complement of 1, the definition of
the sum function ( f* + g¢) can advantageously be extended to:

Sy + ey ifxe DNE,

) (x) ifxe DNE'
2 + o) (x) = f ,
@  (row={7 treDnE,

Undefined ifxe DNE.

In other words, here the sum function takes the valuc ol f(x) il g(x) is
undefined, and takes the value g(x) il f(x) is undefined. It then agrees
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with the old delinition on the restricted domain D N £ and is undehined
only on the region outside of D U . The other operations on functions.
(f =), (f*g)and (f/g) can be similarly delined. The product ( f % g) is
completely analogous to the sum with  in place of +. The dilTerence is:

fo) —glx) ifxeDNE,

3 V() = f() ifxe DN,
G - () ifx e D'OE,

Undefined fye DNE.

The quotient 1s analogous to the difference:

SX) /gy ifve DN Eand g(x) # 0,
1(x) ifxeDNE,

1/g(x) ifxeD'NIEand g(y) # 0,
Undelined ifx e D'NE org(x) =0.

@4 /)=

Note that although it is possible in the sum case, lTor example. to redefine
the two functions f and g to be zero instead of undelined and thereby
climinate the need Tor the extended operations. a subsequent desire to take
the product instead ol the sum would require another redelinition. Other
advantages are exhibited below.

3. PROPOSITIONS, EVENTS AND INDICATOR FUNCTIONS

These kinds ol extended delimtions have been shown |2, 4, 5] to be uselul
when delining Boolean-like operations on uncertain conditional proposi-
tions or conditional events whose conditions are diflerent.

In a similar vein restricted indicator functions. and their closure un-
der linite addition, have been uscd successfully by Suppes and Zanotu
|13, p. 10}, or [12] to deline a qualitative relation between pairs ol events
characterizing the conditional probabilities and conditional expectations of
such pairs ol events and allowing comparison of conditional probabilities
or conditional expectations even when the conditions on the events are
different.

FFor Boolean propositions or events A and 3 we have famitiar and stan-
dard operations of “and” (A), “or”™ (Vv), and “not” (=) corresponding (o
multiplication (), summation {(4), and negation (—) respectively, and also
corresponding o intersection (N), union (U), and complement (') in the
cvent interpretation. There has been no standard delinition of division of
propositions or events but now “conditioning™ has been recognized to be
division. See, for instance, [6]).
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A proposition A can be represented as a measurable indicator function
[ defined on the universe €2 and taking the value 1 Tor w € A and 0 for
we A"

l, w e A‘\,

() Tiler= 0, weA

With this representation, the standard operations on propositions or events
can be expressed in terms of function operations. For instance the nega-
tion () of an event A, which is simply the function that is 0 on A and |
on A’, can be expressed as ( fo — f4) the universal proposition minus f4.
The disjunction (V) of two propositions f4 and fj defined respectively on
domains A and B is the indicator Tunction f4, 5 defined by

I, we(AUDB),

©)  favplw) = 0, we(AUBY.

This disjunction (V) of two propositions A and 8 can be expressed as the
maximum max({ f4, fg) of the two indicator function f,, and f. Similarly
conjunction (A) 1s min( fa, f5). For notational simplicity, a proposition
fa will be denoted simply as “A” but will retain the indicator function
meaning.

The probability P(f4) of a proposition or event f4 is delined to be
P(A), the probability of the />-measurable event A on which f takes the
value 1. So P(fa) = P(fa=1) = l’(fA"'(I)) = Pllwe @z fu@) =
ID.

4. CONDITIONAL PROPOSITIONS, EVENTS AND RESTRICTED
INDICATOR FUNCTIONS

Following De Finetti [8] a conditional (A]|B), "A given B” or “A il B, is
an ordered pair of propositions or events with three possible truth states:
(A|B) takes the vuth value ol A when B is true but (A[B) is “undelined”
or “inapplicable” when £ is false. That is,

true il Aand B are true,
7 (A[B) 1s 1 false i A s false and B s true,

Undefined it B is false.
While De Finetti’s 3-valuedness [or conditionals is followed, the interpre-
tation here of the third truth value as “undelined” or “inapplicable” dilfers
markedly from that ol De Fineti, who interprets the third truth value as
“unknown” and so therelfore as something similar or equivalent to a prob-
ability value between 0 (false) and 1 (true). By contrast the “inapplicable”
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interpretation is not a truth or falsity value; it is an indicator of irrelevance.
This crucial difference in interpretation leads to a difference in operations.

A conditional can be represented as a restricted (partially delined) indi-
cator Tunetion, (A|B):

| Hwe AN DB,

(AIB)Y(w) = 10 fwe A'NAB.
Undelined it w e B
(8) _ Aw) ilwe B,
Undelined il w ¢ B.

Since B(w) = 1 il w € B. the latter ean be expressed as

Alw) A B(w) 1Twe B.

9 \| B =
9) (AlB) (@) Undefined ifwd¢ B.

So (A|B) is just the indicator function (A A B) restricted to the instances
w e B.

FFor any conditional (A|B) with P(B) # (. the conditional probability
P(A|B) is defined as usual to be P(A A B)Y/P(B). With this delinition,
the conditionals (A|B) have conditional probabilitics that also satisly the
6 qualitative axioms ol Suppes and Zanotti [12} or [13] for a conditional
probability measure.

5. EXTENDED OPERATIONS ON CONDITIONAL PROPOSITIONS

We can expand the delinition of a conditional to inelude cases in which
A and B themselves are conditionals. To do this we need only decide on
the delinition of a conditional whose premise is undelined (U/). the other
cases being already determined. We will interpret an undelined condition
to mean that there is no additional restriction imposed by it:

LAIB)Y | (CID) (@) = [(AIB) @) | (C]D) ()]

(AIBY(w) T (C|D)(w) #£ 0,
Undelined il (C|D)(w) =0
(AlBYw) TweCVv I,
Undelined ifw ¢ C v 1

A Hwe BACV D),
Undelined Mo ¢ BAC Vv D).

(10) =

So

(1) (A|B) | (CID) = (A | B(C Vv D).
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With the definition of a conditional event, and using the extended defini-
tions of the operations on functions, definitions can be developed for dis-
junction (V), eonjunction (A) and negation (') to go along with division (|)
as follows. (Also see [4]).

[(A|B) v (C|D)](w) = (A|B) (@) v (C|D)(w)
(12) _ J(A(w) A B(w)) V (C(w) A D(w)) iTxe BUD,
~ | Undefined itz ¢ BUD.

The latter expression is just the conditional ((AAB)V(C A D) | (Bv D)).
So

(13)  (A|B)V(C|D) = (ABVCD)| (B vV D)).

Here, juxtaposition of events A and B has replaeed the conjunction nota-
tion A A B. (A|B) v (C|D) is just (AB v C D) restricted to (B v D).

For example, eonsider the experiment of rolling an ordinary 6-sided die
once, and observing the number n showing up on the die. Suppose a wager
is made that “if nis even thenitwillbe a2, orif n < Sthenn < 47,
Each ol the two component conditionals is applieable on a different subset
of outcomes of the die roll, and combining them with *“or” results in a
disjunction of two conditional propositions.

By using (13) this disjunction is equivalent to a single conditional, with
a conditional probability: (n = 2 | niseven) v (n < 4 | n < §) =
(n=2)yvin<dH | m=#£5)=({1,273}]1{1,2,3,4,06}), which is the
conditional event that il the roll is not 5 then it will be 1, 2 or 3. This has
conditional probability 3/5. By brute force examination ol the 6 outcomes,
this result ean be seen to be eonsistent with intuition: Only a non-5 is
applicable to at least one of the two component conditionals. So a “5”
roll doesn’t count. Given a non-5 roll the set {1, 2, 3} corresponds to win-
ning the wager since *“1” and 37 satisly the second component while “2”
satisfies the first component, but “4” and “6” satisly neither component,

Similarly, for conjunction (A)

[(A|B) A (C]D) ()

= (A|B)Y(w) AM(C| D) (w)
(ABCD)(w) ifwe BND,

_ (AB)Y(w) itwe BND,
(CDY(w) ifwe B’ND,
Undefined itwe B'ND

(ABCDYw) ifwe BND,
(r\]))l)’)((t)) itewe BN D/,
(B'CDYw) ifweBND,
Undetined ifwoe BNDpD
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(14) _ (ABCDV ABD' A B'CDYw) ifxe BUD,
Undelined ifx¢ BUD.

So
(15)  (AIB) A (C|D) =(ABCD Vv ABD' vV B'CD) | (BV D).

The negation operation is [(A|BY [(w) = [(A|BY(@)] = A (o) il w € B.
or undehined il w € B'. So

(16)  (A|B) = (A'|B).

This algebra ol uncertain conditional events or propositions has been ex-
tensively developed in [2-7] including a theory of deduction Tor uncertain
conditionals extending Boolean deduction. See [2. p. 227] Tor an account
ol the Boolean properties retained and lost in the algebra ol conditionals.,

Concerning the structure of this algebra of conditionals, the conjunction
and disjunction operations are obviously commutative and idempotent.
They are less obviously also associative. The inapplicable conditionat (1]0)
is the unigue absolute unit since for all conditionals (x]y), (x|¥) A (110) =
(x]y) and (x|y) v (1|10) = (x]y). While there is a unique relative com-
plement («'|b) for each conditional («|b) such that (al|b) v (a'|b) = (O|b)
and (a|b) A (@’|by = (1]b), there are no absolute complements. Although
(x| A0 = 0and (x]y) v I = 1. it is also true that (x]y) A1 = xy
and (x]|v) v 0 = xv. Neither distributive law holds in general. However,
conjunction distributes over disjunction il and only il whenever the out-
side conditional is true and onc ol the inside conditionals is Talse, then
the other inside conditional is applicable. Similarly, disjunction distributes
over conjunction if and only il whenever the outside conditional is Talse
and one of the inside conditionals is true then the other inside conditional
is applicable. (A prool of these facts about distributivity will be provided
in a subsequent paper.)

6. WEIGHTED AVERAGES

Among the interesting properties of these operations are the following
weighted average lormulas ({5, p. 1682]) for the probabilities of the com
pound conditionals of Equations (13) and (15):

P((AIB) Vv (C|D))

= P(B| BV D)P(A|B)
(17) +P(D| BV DYP(C|D) —~ P(ABCD | BV D),
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P(A|B) A(C| DY)
=PB|BVDYPAD'|B)
(18) +P(D| Bv DYP(CB'|P)+ P(ABCD | BV D).

The last term ol (17) and (18) can be writtenas P(BD | BVD)YP(AC|B D).

I the truth ol each conditional implies the inapplicability ol the other
conditional, that is if AB is asubset ol D" and C D 1s a subset ol B', as for
example when the two conditions, B and D, ave disjoint, then both (17)
and (18) reduce to:

P((A{B) v (C|D))
= P((A|B) A (C|P))
(19) = P(B| BV D)P(A|B)+ P(D| BV D)P(C|D).

In any case, without any extra assumptions the following logical equation
always holds:

(20)  (A|B)V(C|D)=(B| BV D)A|B)Vv (D | Bv P)C|D).

The right-hand side ol (19) is a weighted average ol the conditional prob-
abilities ol (A|B) and (C|D) where the weights are the probabilities of 5
and of D given either occurs, Because the conditional expectation of a re-
stricted indicator Tunction ol an event A equals the conditional probability
ol A given the restriction B2, this formula is equivalent to the one displayed
by Suppes and Zanotti |12, p. 165] or [13, p. 13] for the expectation ol the
disjunction of restricted indicator functions.

Note that because it is a weighted average the right-hand side ol (19)
will in general lie between P(A|B) and P(C|D) not above both. So dis-
junction of conditional events is not always monotonic; P((A|B) Vv (C|D))
can be less than P(A|B). Similarly P((A|B) A (C|D)) can be greater than
P(A|B). This is not strange because in general disjunction or conjunc-
tion of a conditional (A[3) with another conditional (C|D) expands the
context to (B v D), which allows lor greater or lesser probability than
betore the application ol the operation: I (C| D) is (0|€2) then disjunction
with (A|B) yields A B, whose generally lower probability than P(A|B) is
P(A|BYP(B). 1IT(C|D) s (1|1€2) then disjunction with (A|B) yields (1]€2),
with probability 1.

As asimple example of this non-monotonicity, let 2 = {1, 2, 3,4, 5, 6},
the numbered faces ol a 6-sided die thrown once, and let B = {2, 4, 6} and

A = {2,4}. The conditional probability ol rolling 2 or 4, given the roll
1s an even number, equals 2/3. That is, P(A|B) = 2/3. Now suppose

also that C = {1} and D = {1, 3,5} So P(C|D) = 1/3. That is the
probability ol rolling a 1, given the roll is an odd number, equals 1/3. Now



OPERATING ON FUNCTIONS WITH VARIABLE DOMAINS 9

what is the probability of “rolling a 2 or 4 given the roll is even, or rolling
I given the roll is odd™? That is, P((A|B) v (C}D)) = 7 The answer is
P(ABNVCD | BV D) = P{lI,2.4}/P(even or odd) = 3/6 = 1/2. So
here P((A|B) v (C]D)) is less than P(A|B) alone.

7. EXTENDED OPERATIONS ON RANDOM VARIABLES

Having extended the operations for functions with dilferent domains and
having applied them to extend the operations for conditional propositions.
it is possible to extend the operations on random variables and conditional
random variables. A real-valued random variable X is a Tunction from a
sample space §2 of a probability space (2, B, P) into the real numbers
such that for any real number x, the set of instances @ € 2 lTor which
X(w) < x is a member of B, and so has a probability Plw €
X(w) < x}. It follows that there is a probability that X takes a valie in
any of the collection of Borel subsets of rcal numbers, consisting of those
subsets that are a countable collection of intersections or unions of (he
intervals (—oo, x) or their complements |x, co), for any real number x. Of
course any interval (x, y) of real numbers is a Borel set.

As with Tunctions, just doing division on random variables in general
produces new ones with dilTerent domains whenever the divisor assumes
the real value 0. Subsequently, using standard techmques, operating with
this restricted variable will propagate its vestricted domain. However using
these extended operations, the domains of functions can be expanded as
well as restricted.

While the ordered pair (A|B) for events A, B, is defined and interpreted
as “event A given event 2 is true”, the corresponding construction (X|1).
where X and Y are random variables, can not be immediately interpreted
because “given Y is true” does not make sense for real-valued random
variables. The condition must be an event such as Y € B3, the event that Y
takes a value in a Borel set of real numbers B.

8. CONDITIONAL RANDOM VARIABLES

Let X, Y, W, Z be rcal-valued random variables on a probability space
P = (2, B, P)and let A, B, C. D,... be Borel sets on the real line.
A conditional random variable (X | ) € £) s just the random variable X
restricted to the instances o tor which Y(w) € B. That is,

X(w) i Y{w) € B,

By RElEeEy= Undefined if Y(w) ¢ B

=XonY (B
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1f Y 1(B) isempty, then (X | Y € B) is completely undefined, defined for
no instances .

Although conditional probability distributions, conditional density func-
tions and conditional expectations have standard definitions (See, for in-
stance, [11]), the operations of summation, difference, multiplication and
division on conditional random variables are all expressed in terms of prob-
ability distributions rather than directly. But now these can follow directly
from the extended definitions for operations on functions.

0. OPERATIONS ON CONDITIONAL RANDOM VARIABLES

Using the extended definitions for operations on real-valued functions,
extended operations for random variables can be defined as follows:

[(X|YeB)+(W|Ze D)(w)

22) | X (@) +W(w) ifY(w)e BorZ(w)eD,
~ | Undefined if Y(w) ¢ Band Z(w) ¢ D.

Replacing “+” in (18) with negation (=), or multiplication (x) yields the
corresponding operations on the two conditional random variables. Divi-
sion requires a separate formula due to possible division by zero:

[(X|Y eB)+-(W|Ze D)(w)

| X(w) = W(w) ifY(w)e€ BorZ(w) e D,
~ | Undefined if Y(w) ¢ Band Z(w) ¢ D
X(w)/ W(w) it Y{(w)e Band0 # Z(w) € D,
X(w) if Y(w) € Band Z(w) ¢ D,
(23) =11/ W(w) if Y(w) ¢ Band 0 £ Z(w) € D,
Undefined if Y(w) ¢ Band (Z(w)=20

or Z(w) ¢ D).

10. EXPECTATIONS AND CONDITIONAL EXPECTATIONS

The expectation or average E(X) of a random variable X is defined to he
just the sum of the values of X each weighted by its probability. Keep-

ing to an elementary formulation for simplicity of exposition, assume the
universe 2 is finite or countable. Then

24) E(X)= Z X () P(w).

wed
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IT' X and W are two random variables dehned on Q then easily E(X +
W= ECE ) BCWS).

By standard definitions, the conditional expectation (X | ¥ € B),
where Y is a random variable on € and B is a Borel subset ol real numbers,
is defined to be

EXX|YeB = EXonY '(B)
- Zx'(w)mm Y (B

meS

= Y X(@PlwA Y {(B)/ P(r~(5)
mES
(25) = [1/P(Y e B)] Y X(@Pw.

)'({1))( B

Note here that if P (Y ~'(8)) = 0, then the conditional expectation is unde-
lined. Otherwise, P(w|Y '(B)=0 for we¢ Y Y(B) and
Plw | ¥~ 1(B))y = P(a)) LY ' (B)) for w € ¥'(B).

E(X | YV e B)is just the expectation ol the random variable X re-
stricted to the instances @ for which Y (w) takes a value in B. The individ-
ual probabilities of these instances are just normalized by P(Y € B) so
that their sum is 1 while they maintain the same relative probabilities with
respect to cach other as before the conditioning.

Now it is well known (see, for example. [ 11, p. 144]) thatif ¥ ~'(B) and
Z~Y(D) are disjoint and exhaustive of , thatis, Y " "(B)A Z '(D) =
and Y U(BYV Z YD) = Qand if X, Y, W and Z are random variables
on £2, then

EX|YeB+W|ZebD)
(26) = EB(X | ¥ eByP @ € by EW | Ze DIP(Z € B).

That is, the expectation of the sum of the conditional random variables is
the sum of the conditional expectations weighted by the probabilities ol the
associated conditions. With the extended definitions ol operations on ran-
dom variables this result can be generalized to allow Y '(B) and Z~'(D)
to be arbitrary events that may overlap and also may not be exhaustive
ol Q.

First we extend the result to disjoint events ¥ LB)Y and Z YD) that
do not necessarily exhaust £2.

LEMMA 1. If Y ~"Y(B) and Z ' (D) are disjoint events of Q. and if X, Y.
W and 7 are random variables on 2, then

BUX | Y € B+ (W |2 €D))




12 PHILIP G. CALABRESE

=EX|YeB)P(YeB|YeBVvZeD)
27 +EW | Ze)P(ZeB|YeBvZeD)).

Proof. This result follows by using a new probability measure on just
the part of Q2 inside (Y € Bv Z € D). So let O be the probability measure
defined by Q(A) = P(A | Y € Bv Z € D) for any event A in Q.
That @ is a probability measure on (Y € BV Z € D) is easy to show
since it is non-negative, Q(Y ¢ Bv Z e D) = P(Y e BvZ € D |
Y e BvZ e D)= 1,and finally, if A and C are disjoint events in 2,
then Q(AVC) =PAVC|YeBvZeD)=PAVC)/PY €
BvZeD)y=(PA+ PC)/P(Y e BVvZeD)=QA)+ O(B).
In addition, the conditional expectation Ep(X | Y € B) with respect to
Q of an arbitrary random variable X given arbitrary (Y € B) equals the
conditional expectation Ep(X | Y € B) with respect to P because

Eo(X|Y€B) = ) X(@Q@A(YeB)|YeB)

weld
= ) X(@Q@A (Y €B)/QY € B)
we
= Y X(@PwA(Y € B)/P(Y €B)
wed
(28) = Ep(X|Y € B).

So now computing

Ep((X|Y € B+ (W | Ze D))
=Eo((X | Y€ BY+(W | Ze D))
=E(X|YeBOY eRB+EW|ZeD)Q(ZeD)
=EX|YeB)PYecB|YeBVvZeD)

(29) +EWIIZeD)yP(ZeD|YeBvVvZeD).
That completes the proof of Lemma 1. O

THEOREM 1. If X, Y, W and Z are real-valued random variables and
B and D are arbitrary Borel subsets of real mumnbers, then

E(X|Y € BYy+(W | Z e D))

=EX|YeBPYeB|YeBVZeD)
(30) +EW | ZeDP)P(ZeD|YeBVZeD).
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Proof Let K = Y~'(B) = {w € © : ¥Y(w) e B} and L = Z=YD).
So using the definition of extended suwmmation for conditional random
variables,

E(X|YeB)+(W|Ze
=E((X]K+W|LH=EX+W|KVL

(3D) =E(X|KLD+X+W | KLY+ W] K'L).

where juxtaposition has again replaced conjunction (A) to shorten nota-
tion.

Since KL', KL and K'L are disjoint, according to Lemma 1, we can
continue with
EX|KIN+ X+ WKLY+ (W | K'L)
=EX|KL)YPKL | KVL)
+EX+W | KL)P(KLIK VL)
(32) +E(W | K'LYPK'L| K v
= BX REYPLEL | w1
+E(X | KL)P(KL | K vL)
+EW L KLYPKL| K VL)
(33) +EW | K'L)YP(K'L|K VL)
= B | BEL)REL | BYPE | & w.L)
4+ EX | KE)PCEL | K)PWK | K v L)
+EMW | KLYP(KL{LP(L| K VL)
(34) +EW | K'LYP(K'L|LYP(L|K VL)
={E(X | KLYP(KL'| K)
+EX|KLPKL | K)IPK|KVL)
+|E(W I KL)P(KL | L)

(35) LEOW | B DPEEL L TP Y v
=E(X | KLY+ (X | KLYPK | KVL)
(36) FE(W KLY+ (W | K'LYP(L| K VL),

using Lemma | in reverse. So

E(X | K)+ (W | L)
(37) = EXIKPKKIKVL+EW|LYPL|KVL).

That 1s.

E(X|YeB)+(W|ZeD)
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—EX|YeBPYeB|YeBVZEeD)
(38) L BW|ZeDN)PZeD|YeBvZeDb)

That completes the prool of Theorem 1. O

THEOREM 2. If X, Y, W and 7 are real-valued random variables and
B and D are arbitrary Borel subsets of real numbers, then the expectation
of the product of the conditional random variables (X |'Y € B) and
(W | Z € D) is given by

E{(X{YeB)x(W|ZeD))
=FEX|YeBANZeD)PYeBAZ¢D,|
YeBvZeD)
+E(X«W|YeBAZeD)YP(YeBANZeD)|
YeBvZeD)
+IL(Z|Y¢DBAZeD)YPY¢BANZeD)
(39) YeBvZeD).

Proof. By the extended definition of products,

(X|YeBx(W|Zeh)

X itYeBand 7Z ¢ D,
(40) _ X x W lf Y € li and / e D,
W 'Y ¢ Band 7 € D,

Undelined if Y ¢ Band Z ¢ D,

where the domain of the product random variable has been broken into dis-
joint events. Then by the delinition of the conditional expectation (Equa-
tion (25)), the expectation ol this product random variable, E((X | ¥V €
By = (W | Z € D)), is immediately expressed by Equation (39). This
completes the proof of Theorem 2. O

With a kind of independence, Fquation (39) can be somewhat simplified.
Recall that two random variables, X and Z, are independent il P(X €
AandZ € C) = P(X € A)P(Z € C)foranyevents X € Aand Z € C.
Knowing the value taken by one variable does not change the probability
ol the other varable taking its values.

DEFINITION 1 (Independence of Random Variables). Two random vari-
ables X and W are independent if they are independent on each common
domain. That is, X and W are independent if Tor any event I/ for which
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both X and W are defined, X is conditionally independent of W given /.
Thatis PIX e ANWeC | H)=P(XeA|HYPWeC|H).

COROLLARY TO THEOREM 2. If X and W are independent random
variables then under the hypothesis of Theorem 2,

E(X|YeB)«x(W|ZeDy
=LEX|YeBANZEMP(YeBANZED|

YeBvZeD)

+EX|YeBAZeDYEW)]|

YeBAZeD)YPYeBAZeD]|

YeBvZeD)

+EMWIYEBANZeDP(Y EBAZeD]
“4n YeBvZeD).

Proof. 1tis well known that the expectation of a product of independent
random variables is the product of the expectations. Therelore E(N + W |
YeBAZeD)y=EX|YeBAZeD)EW|YeBAZEeD) and
the result follows by substitution into LEqguation (39).

EXAMPLE I.  Consider a work force consisting of workers i = 1.2,
...t with vanable work output levels W, Wa, ..., W, and work shifts
STy 824 ..., 8, respectively spanning the 24 hour day. To formulate the prob-
lem n terms of random variables, let s;(w) = 1 if time w € s; and 0
otherwise. Then the work level at time @ of worker i is (W, | s;(w) = 1).
The sum of work output of all workers is )", (W; | s;(w) = 1), and the
average or expected work level over the day is If(Zl.(\'V,» Vs, =) =
> E(W; | Silw) = 1) P(si(@) = D).

EXAMPLE 2. Let B and C be the surveillance regions of two radars, R
and R2, and suppose X (w) is the crror rate of missed detections by R at
any place w € B, and W(w) is the error rate by R2 at any place o € C.
X and W are undefined outside their respective domains B and C. Then
using the definition of extended product. and assuming independence of
detections by R1 and R2, (X « W)(w) = X (w) W () is the combined error
rate of missed detections by both radars over (BU ). This combined error
rateis X on BNC, X *Won BNC,and Won B'NC.

Now suppose in addition that the detection rate of radar R1 is greatly
alTected by fog 7 while interrogation radar R2 is most affected by the
density 1 of communication on interrogation frequencies. Measuring fog
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as “heavy (1), medium (m), or none (n)” and communication traffic den-
sity on a scale Irom 1 to 3, the error rate over (B U C) under conditions
of heavy fog and communication density 2 is (X = W) | (/ = h) A
(D=DABUCH=X«W)| (=D =2)(BUC)). So the ex-
pected combined error rate of the two radars given heavy fog and medium
(2) communication density is IZ((X = W) | (F =h)(D =2)(BUC)).
Now by the product definition
(X«W) | (F=m(D=2)(BUQO))
=X |(F=mn(D=2)BCYV(X+xW|

(42) (F = k) (D =2BC) v(W | (F =h)}D =2)B'C).
Since the detection errors for the two radars are assumed independent, the
last equation simplifies to

(X = W) | (F=MhD=2)(BULC))
= (X | (F=hBC)V (X+W |

(43) (F =k (D =2BC) v (¥ | {(D=2DB'C)

Let G = (17 = h)(D = 2)(BUC). Then in terms of the average error rates
of the individual radars, the average combined error rate given heavy fog
and medium (2) communication density over the combined surveillance
region (BUC) is
E((X*W)| (F=W)(D=2)(BUQO)
= BX | (F = £ 8C)PUF =R)BCY | G)
+EXxW | (F=ND=2)BCYP{(F=hWND=2)BC|
(44) G) + E(W | (D =2)(BCYHYP(D =2)B'C | G)
= E(X | (F = h)(BCY)P((F = h)(BC) | G)
+E(X | =h)(BCHEW |
(D=2)(BOHPUF =)D =2)(BC)|G)

(45) +ETW (=B enPUD =B C) | G)
using conditional independence again to split the expectation of X« W and
to simplify the conditions.

For simplicity, assume that # U C is the whole universe and that fog
is heavy (FF = h) everywhere and communication density is medium
(D = 2)everywhere in BUC. So G = the whole universe 2, and P((F =
BECY | G) = PBC). Similady PUF = #)(PD = BDBC | G) =
P(BC) and P((D = 2)(B'C) | G) = P(B'C). Thus

EWX* WY | (F =h)(D=2)(BUC))
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=EX | (F =h)(BCHP(BC)
+EX | (F=h)(BCHEMW | (D =2)}(BCHP(BO)
(46) +EW | (D =2)(B'CHP(BO).

If the error rate ol radar R1 is 0.04 in heavy fog (F' = ) and the error rate
of R2 is 0.02 in medium communication density (D = 2), the combined
error rate under the conditions is

E(X*+W) | (F=h(D=2BUC)
(47) = (0.04) P(BC") + (0.04)(0.02) P(BC) + (0.02) P(B'C).

Note that the error rates are multiplied in the common surveillance region
BC where the combined crror rate is just 0.0008.

11. SUMMARY

Lixtended delinitions of Tunction addition and other operations have been
applied to conditional propositions and conditional events, and to condi-
tional random variables. This allows direct manipulation of conditional
events and of conditional random variables without resort to a probability
or density Tunction. General formulas for the expectation of the sum, and
ol the product, ol two conditional random variables have been determined.
Finally two examples illustrate the use ol these formulas in practical situ-
ations.
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